CLOSED LOOP INTERVAL ONTOLOGY
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Alphabetical
Most recently edited
Progress level
Placeholder
Note
Sketch
Draft
Polished


Searches selected display

The Many Forms of Many/One
Universal conceptual form

Invocation
Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

Semantics
How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Set
Dimensions of set theory

Numbers
What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Graphics
Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

Equality
What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Compactification
Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

Articles
From other sources

Arithmetic
Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point


Term
Dedekind cut

Definition / description

Is not a dimension

Tue, Apr 27, 2021

Reference

In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are a method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the rational numbers into two sets A and B, such that all elements of A are less than all elements of B, and A contains no greatest element. The set B may or may not have a smallest element among the rationals. If B has a smallest element among the rationals, the cut corresponds to that rational. Otherwise, that cut defines a unique irrational number which, loosely speaking, fills the "gap" between A and B.

In other words, A contains every rational number less than the cut, and B contains every rational number greater than or equal to the cut. An irrational cut is equated to an irrational number which is in neither set. Every real number, rational or not, is equated to one and only one cut of rationals.[citation needed]

Dedekind cuts can be generalized from the rational numbers to any totally ordered set by defining a Dedekind cut as a partition of a totally ordered set into two non-empty parts A and B, such that A is closed downwards (meaning that for all a in A, x ? a implies that x is in A as well) and B is closed upwards, and A contains no greatest element. See also completeness (order theory).

It is straightforward to show that a Dedekind cut among the real numbers is uniquely defined by the corresponding cut among the rational numbers. Similarly, every cut of reals is identical to the cut produced by a specific real number (which can be identified as the smallest element of the B set). In other words, the number line where every real number is defined as a Dedekind cut of rationals is a complete continuum without any further gaps.

https://en.wikipedia.org/wiki/Dedekind_cut

Dedekind cut cut

A subdivision of the set of real (or only of the rational) numbers (of) R into two non-empty sets A and B whose union is R, such that a Comments For the construction of R from Q using cuts see [a1].

References [a1] W. Rudin, "Principles of mathematical analysis" , McGraw-Hill (1953) Comments More generally we may define a cut in any totally ordered set X to be a partition of X into two non-empty sets A and B whose union is X, such that a *************

From brilliant.org

https://brilliant.org/wiki/dedekind-cuts/

A Dedekind cut x = (L, U)x=(L,U) in \mathbb{Q}Q is a pair of subsets L,UL,U of \mathbb{Q}Q satisfying the following:

L \cup U = \mathbb{Q}, L \cap U = \emptyset, L \not= \emptyset, U \not= \emptyset.L?U=Q,L?U=?,L ? ? =?,U ? ? =?. If l \in Ll?L and u \in Uu?U, then l < u.l

https://brilliant.org/wiki/dedekind-cuts/