CLOSED LOOP INTERVAL ONTOLOGY
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Alphabetical
Most recently edited
Progress level
Placeholder
Note
Sketch
Draft
Polished


Searches selected display

The Many Forms of Many/One
Universal conceptual form

Invocation
Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

Semantics
How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Set
Dimensions of set theory

Numbers
What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Graphics
Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

Equality
What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Compactification
Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

Articles
From other sources

Arithmetic
Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point


Theme
Dedekind cuts of rational numbers https://www.math.hmc.edu/funfacts/ffiles/30005.3.shtml
Placeholder

Definition / description

Dedekind Cuts of Rational Numbers

Given a number line with equally spaced tick marks one unit apart, we know how to measure rational lengths: the length m/n can be obtained by dividing a length m line segment into n equal parts (if you like, this can be done by straightedge and compass). A very natural question you might ask is whether all lengths on the line are rational length?

The Greeks knew that this was not the case; the square root of two is in fact irrational and can be obtained as the hypotenuse of a right triangle with side lengths 1 and 1. And there are other lengths (like Pi) which are irrational, but cannot be constructed by straightedge and compass?

These numbers (representing lengths) have an ordering, thus can be associated with points along a line. What the above remarks show is that the set rational numbers in this line has "gaps". How does one "fill in the gaps" between the rational numbers?

One way to do this was proposed by Dedekind in 1872, who suggested looking at "cuts". A cut C is a proper subset of rational numbers that is non-empty, has no greatest element, and is closed to the left (if r is in C, then any rational q < r is also in C).

Cuts can be shown to have a natural ordering (by inclusion), a natural arithmetic, and in a very natural way "contain" an isomorphic copy of the rational numbers (the cut associated to a rational r is the set of all rationals less than r). But the set of cuts also contain uncountably many more elements. The set of all such cuts is called the real numbers. In effect, we have constructed the real numbers from the rationals! The Math Behind the Fact: The technical details are best left to a course in real analysis. To add two cuts A and B, consider the set formed by summing one element of A with one element of B. Products may be defined similarly (but require one to be a little more careful). One can then show that the real numbers form a ordered field, and also satisfy the least upper bound property: every non-empty subset that is bounded above has a least upper bound.

This construction is one way to define the real numbers. This set contains a cut that "behaves like" Sqrt[2], in that when you multiply it by itself, you get the cut corresponding to 2.

How to Cite this Page: Su, Francis E., et al. "Dedekind Cuts of Rational Numbers." Math Fun Facts. .

Hide Placeholder Note Sketch Draft Polished

Sat, Jul 20, 2019