CLOSED LOOP INTERVAL ONTOLOGY
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Alphabetical
Most recently edited
Progress level
Placeholder
Note
Sketch
Draft
Polished


Searches selected display

The Many Forms of Many/One
Universal conceptual form

Invocation
Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

Semantics
How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Set
Dimensions of set theory

Numbers
What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Graphics
Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

Equality
What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Compactification
Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

Articles
From other sources

Arithmetic
Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point


Theme
Matrix
Placeholder

Definition / description

rows and columns

Hide Placeholder Note Sketch Draft Polished

Thu, Mar 25, 2021

Reference

https://en.wikipedia.org/wiki/Matrix_(mathematics)

In mathematics, a matrix (plural matrices) is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns.[1][2] For example, the dimension of the matrix below is 2 × 3 (read "two by three"), because there are two rows and three columns:

{\displaystyle {\begin{bmatrix}1&9&-13\\20&5&-6\end{bmatrix}}.}{\displaystyle {\begin{bmatrix}1&9&-13\\20&5&-6\end{bmatrix}}.} Provided that they have the same dimensions (each matrix has the same number of rows and the same number of columns as the other), two matrices can be added or subtracted element by element (see conformable matrix). The rule for matrix multiplication, however, is that two matrices can be multiplied only when the number of columns in the first equals the number of rows in the second (that is, the inner dimensions are the same, n for an (m×n)-matrix times an (n×p)-matrix, resulting in an (m×p)-matrix). Even when two matrices have dimensions allowing them to be multiplied in either order, the results need not be the same. That is, matrix multiplication is not, in general, commutative. Any matrix can be multiplied element-wise by a scalar from its associated field. Matrices are often denoted by capital roman letters such as {\displaystyle A}A, {\displaystyle B}B and {\displaystyle C}C.[3]

******

Important

A matrix is a rectangular array of numbers (or other mathematical objects) for which operations such as addition and multiplication are defined.

[8] Most commonly, a matrix over a field F is a rectangular array of scalars, each of which is a member of F.[9][10] Most of this article focuses on real and complex matrices, that is, matrices whose elements are respectively real numbers or complex numbers. More general types of entries are discussed below. For instance, this is a real matrix:

{\displaystyle \mathbf {A} ={\begin{bmatrix}-1.3&0.6\\20.4&5.5\\9.7&-6.2\end{bmatrix}}.}{\displaystyle \mathbf {A} ={\begin{bmatrix}-1.3&0.6\\20.4&5.5\\9.7&-6.2\end{bmatrix}}.} The numbers, symbols, or expressions in the matrix are called its entries or its elements. The horizontal and vertical lines of entries in a matrix are called rows and columns, respectively.

Size The size of a matrix is defined by the number of rows and columns that it contains. A matrix with m rows and n columns is called an m × n matrix, or m-by-n matrix, while m and n are called its dimensions. For example, the matrix A above is a 3 × 2 matrix.

Matrices with a single row are called row vectors, and those with a single column are called column vectors. A matrix with the same number of rows and columns is called a square matrix.[11] A matrix with an infinite number of rows or columns (or both) is called an infinite matrix. In some contexts, such as computer algebra programs, it is useful to consider a matrix with no rows or no columns, called an empty matrix.

https://en.wikipedia.org/wiki/Matrix_(mathematics)