CLOSED LOOP INTERVAL ONTOLOGY
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Alphabetical
Most recently edited
Progress level
Placeholder
Note
Sketch
Draft
Polished


Searches selected display

The Many Forms of Many/One
Universal conceptual form

Invocation
Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

Semantics
How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Set
Dimensions of set theory

Numbers
What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Graphics
Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

Equality
What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Compactification
Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

Articles
From other sources

Arithmetic
Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point


Theme
Data hierarchy
Placeholder

Definition / description

Hide Placeholder Note Sketch Draft Polished

Sat, Apr 10, 2021

Reference

Data hierarchy refers to the systematic organization of data, often in a hierarchical form. Data organization involves characters, fields, records, files and so on.[1][2] This concept is a starting point when trying to see what makes up data and whether data has a structure. For example, how does a person make sense of data such as 'employee', 'name', 'department', 'Marcy Smith', 'Sales Department' and so on, assuming that they are all related? One way to understand them is to see these terms as smaller or larger components in a hierarchy. One might say that Marcy Smith is one of the employees in the Sales Department, or an example of an employee in that Department. The data we want to capture about all our employees, and not just Marcy, is the name, ID number, address etc.

Contents 1 Purpose of the Data Hierarchy 2 Components of the Data Hierarchy 3 Illustration of the data hierarchy 4 See also 5 References Purpose of the Data Hierarchy

"Data hierarchy" is a basic concept in data and database theory and helps to show the relationships between smaller and larger components in a database or data file. It is used to give a better sense of understanding about the components of data and how they are related.

It is in particular important in databases with referential integrity, third normal form or perfect key. "Data hierarchy" is the result of proper arrangement of data without redundancy. Avoiding redundancy eventually leads to proper "Data hierarchy" representing the relationship between data and revealing it's relational structure.

Components of the Data Hierarchy The components of the data hierarchy are listed below.

A data field holds a single fact or attribute of an entity. Consider a date field, e.g. "19 September 2004". This can be treated as a single date field (e.g. birthdate), or three fields, namely, day of month, month and year.

A record is a collection of related fields. An Employee record may contain a name field(s), address fields, birthdate field and so on.

A file is a collection of related records. If there are 100 employees, then each employee would have a record (e.g. called Employee Personal Details record) and the collection of 100 such records would constitute a file (in this case, called Employee Personal Details file).

Files are integrated into a database.[3] This is done using a Database Management System.[2] If there are other facets of employee data that we wish to capture, then other files such as Employee Training History file and Employee Work History file could be created as well.

https://en.wikipedia.org/wiki/Data_hierarchy