CLOSED LOOP INTERVAL ONTOLOGY
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Alphabetical
Most recently edited
Progress level
Placeholder
Note
Sketch
Draft
Polished


Searches selected display

The Many Forms of Many/One
Universal conceptual form

Invocation
Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

Semantics
How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Set
Dimensions of set theory

Numbers
What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Graphics
Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

Equality
What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Compactification
Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

Articles
From other sources

Arithmetic
Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point


Theme
Equality (mathematics)
Placeholder

Definition / description

Hide Placeholder Note Sketch Draft Polished

Sat, Apr 10, 2021

Reference

In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced A equals B.[1][2] The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.

For example:

{\displaystyle x=y}x=y means that x and y denote the same object.[3]

The identity {\displaystyle (x+1)^{2}=x^{2}+2x+1}{\displaystyle (x+1)^{2}=x^{2}+2x+1} means that if x is any number, then the two expressions have the same value. This may also be interpreted as saying that the two sides of the equals sign represent the same function.

{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}}{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}} if and only if {\displaystyle P(x)\Leftrightarrow Q(x).}{\displaystyle P(x)\Leftrightarrow Q(x).} This assertion, which uses set-builder notation, means that if the elements satisfying the property {\displaystyle P(x)}P(x) are the same as the elements satisfying {\displaystyle Q(x),}{\displaystyle Q(x),} then the two uses of the set-builder notation define the same set. This property is often expressed as "two sets that have the same elements are equal." It is one of the usual axioms of set theory, called axiom of extensionality.[4]

*********

Basic properties Substitution property: For any quantities a and b and any expression F(x), if a = b, then F(a) = F(b) (provided that both sides are well-formed). Some specific examples of this are:

For any real numbers a, b, and c, if a = b, then a + c = b + c (here, F(x) is x + c); For any real numbers a, b, and c, if a = b, then a ? c = b ? c (here, F(x) is x ? c); For any real numbers a, b, and c, if a = b, then ac = bc (here, F(x) is xc); For any real numbers a, b, and c, if a = b and c is not zero, then a/c = b/c (here, F(x) is x/c).

Reflexive property: For any quantity a, a = a. Symmetric property: For any quantities a and b, if a = b, then b = a. Transitive property: For any quantities a, b, and c, if a = b and b = c, then a = c.

These three properties make equality an equivalence relation. They were originally included among the Peano axioms for natural numbers. Although the symmetric and transitive properties are often seen as fundamental, they can be deduced from substitution and reflexive properties.

**********

Relation with equivalence and isomorphism

Main articles: Equivalence relation and Isomorphism

Viewed as a relation, equality is the archetype of the more general concept of an equivalence relation on a set: those binary relations that are reflexive, symmetric and transitive. The identity relation is an equivalence relation. Conversely, let R be an equivalence relation, and let us denote by xR the equivalence class of x, consisting of all elements z such that x R z. Then the relation x R y is equivalent with the equality xR = yR. It follows that equality is the finest equivalence relation on any set S in the sense that it is the relation that has the smallest equivalence classes (every class is reduced to a single element).

***

In some contexts, equality is sharply distinguished from equivalence or isomorphism.

For example, one may distinguish fractions from rational numbers, the latter being equivalence classes of fractions: the fractions "1/2 "and "2/4" are distinct as fractions (as different strings of symbols) but they "represent" the same rational number (the same point on a number line). This distinction gives rise to the notion of a quotient set.

***

Similarly, the sets

{\displaystyle \{{\text{A}},{\text{B}},{\text{C}}\}}{\displaystyle \{{\text{A}},{\text{B}},{\text{C}}\}} and {\displaystyle \{1,2,3\}}{\displaystyle \{1,2,3\}} are not equal sets — the first consists of letters, while the second consists of numbers — but they are both sets of three elements and thus isomorphic, meaning that there is a bijection between them. For example

{\displaystyle {\text{A}}\mapsto 1,{\text{B}}\mapsto 2,{\text{C}}\mapsto 3.}\text{A} \mapsto 1, \text{B} \mapsto 2, \text{C} \mapsto 3. However, there are other choices of isomorphism, such as

{\displaystyle {\text{A}}\mapsto 3,{\text{B}}\mapsto 2,{\text{C}}\mapsto 1,}\text{A} \mapsto 3, \text{B} \mapsto 2, \text{C} \mapsto 1, and these sets cannot be identified without making such a choice — any statement that identifies them "depends on choice of identification". This distinction, between equality and isomorphism, is of fundamental importance in category theory and is one motivation for the development of category theory.

https://en.wikipedia.org/wiki/Equivalence_relation

https://en.wikipedia.org/wiki/Equality_(mathematics)