Closed Loop Interval Ontology
     CLOSED LOOP INTERVAL ONTOLOGY
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Alphabetical
Most recently edited
Progress level
Placeholder
Note
Sketch
Draft
Polished


Searches selected display

The Many Forms of Many/One
Universal conceptual form

Invocation
Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

Semantics
How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Set
Dimensions of set theory

Numbers
What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Graphics
Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

Equality
What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Compactification
Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

Articles
From other sources

Arithmetic
Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point



Ontology is the "philosophy and science of being". In this project, we are particularly studying "semantic ontology" in the context of both science and philosophy, with an emphasis on word-meaning and the logic that flows through words.

Semantic ontology is intimately related to epistemology, with a greater emphasis on technical details.

Abstraction
Placeholder | Back

Abstraction is a process of creating general categories that combine attributes of specific categories. It is defined as a hierarchical process in ascending layers (from specific class to general class in ascending layers in the vertical axis).

Sat, Mar 20, 2021

Reference
Abstraction in its main sense is a conceptual process where general rules and concepts are derived from the usage and classification of specific examples, literal ("real" or "concrete") signifiers, first principles, or other methods.

"An abstraction" is the outcome of this process—a concept that acts as a common noun for all subordinate concepts, and connects any related concepts as a group, field, or category.

Conceptual abstractions may be formed by filtering the information content of a concept or an observable phenomenon, selecting only the aspects which are relevant for a particular subjectively valued purpose. For example, abstracting a leather soccer ball to the more general idea of a ball selects only the information on general ball attributes and behavior, excluding, but not eliminating, the other phenomenal and cognitive characteristics of that particular ball.

In a type–token distinction, a type (e.g., a 'ball') is more abstract than its tokens (e.g., 'that leather soccer ball').

Thinking in abstractions is considered by anthropologists, archaeologists, and sociologists to be one of the key traits in modern human behaviour, which is believed to have developed between 50,000 and 100,000 years ago. Its development is likely to have been closely connected with the development of human language, which (whether spoken or written) appears to both involve and facilitate abstract thinking.

Abstraction involves induction of ideas or the synthesis of particular facts into one general theory about something. It is the opposite of specification, which is the analysis or breaking-down of a general idea or abstraction into concrete facts. Abstraction can be illustrated with Francis Bacon's Novum Organum (1620), a book of modern scientific philosophy written in the late Jacobean era[3] of England to encourage modern thinkers to collect specific facts before making any generalizations.

Bacon used and promoted induction as an abstraction tool, and it countered the ancient deductive-thinking approach that had dominated the intellectual world since the times of Greek philosophers like Thales, Anaximander, and Aristotle.[4] Thales (c. 624–546 BCE) believed that everything in the universe comes from one main substance, water. He deduced or specified from a general idea, "everything is water", to the specific forms of water such as ice, snow, fog, and rivers.

Modern scientists can also use the opposite approach of abstraction, or going from particular facts collected into one general idea, such as the motion of the planets (Newton (1642–1727)). When determining that the sun is the center of our solar system (Copernicus (1473–1543)), scientists had to utilize thousands of measurements to finally conclude that Mars moves in an elliptical orbit about the sun (Kepler (1571–1630)), or to assemble multiple specific facts into the law of falling bodies (Galileo (1564–1642)).

In mathematics

Main article: Abstraction (mathematics)

Abstraction in mathematics is the process of extracting the underlying structures, patterns or properties of a mathematical concept or object,[19] removing any dependence on real world objects with which it might originally have been connected, and generalizing it so that it has wider applications or matching among other abstract descriptions of equivalent phenomena.

The advantages of abstraction in mathematics are:

  • It reveals deep connections between different areas of mathematics.
  • Known results in one area can suggest conjectures in another related area.
  • Techniques and methods from one area can be applied to prove results in other related area.
  • Patterns from one mathematical object can be generalized to other similar objects in the same class.
  • The main disadvantage of abstraction is that highly abstract concepts are more difficult to learn, and might require a degree of mathematical maturity and experience before they can be assimilated.

URL
https://en.wikipedia.org/wiki/Abstraction

Basic concepts of ontology
Closed Loop Ensemble
Core vocabulary
Core terms on the strip