Closed Loop Interval Ontology
       The Digital Integration of Conceptual Form
TzimTzum/Kaballah | Loop definition | Home | ORIGIN    
Please sign in
or register

Email *

Password *

Home | About

Select display
Show public menu
Show all theme groups
Show all themes
Show all terms
Order results by
Most recently edited
Progress level

Searches selected display

The Many Forms of Many/One
Universal conceptual form

Aligning the vision

Project under development
Evolving and coalescing

Guiding motivation
Why we do this

A comprehensive vision
Ethics / governance / science

Cybernetic democracy
Homeostatic governance

Collective discernment
Idealized democracy

Objectives and strategy
Reconciliation and integration

Reconciliation of perspectives
Holistic view on alternatives

What is a concept?
Definitions and alternatives

Theories of concepts
Compare alternatives

What is truth?
How do we know?

How meaning is created

Synthetic dimensionality
Foundational recursive definition

Universal hierarchy
Spectrum of levels

A universal foundation
The closed loop ensemble contains
all primary definitions

Dimensions of set theory

What is a number?

Venn diagrams
Topology of sets

Objects in Boolean algebra
How are they constructed?

Core vocabulary
Primary terms

Core terms on the strip
Closed Loop framework

Hierarchical models

Digital geometry
Euclid in digital space

The dimensional construction
of abstract objects
Foundational method

The digital integration
of conceptual form
Compositional semantics

Closed loop interval ontology
How it works

Cognitive science
The integrated science of mind

What does it mean?

Formal systematic definitions
Core terms

Data structures
Constructive elements
and building blocks

Preserving data under transformation

Steady-state cosmology
In the beginning

Semantic ontology
Domain and universal

Foundational ontology
A design proposal

Coordinate systems
Mapping the grid

From other sources

Foundational computation

Plato's republic and
homeostatic democracy
Perfecting political balance

Branching computational architecture
Simultaneity or sequence

Abstract math and HTML
Concrete symbolic representation

All knowledge as conceptual
Science, philosophy and math
are defined in concepts

Does the Closed Loop
have an origin?
Emerging from a point

A comprehensive vision
Ethics / governance / science

This project, though concentrating on the technical core of collaborative understanding and language, embodies a comprehensive vision of collective human self-guidance. We are considering and proposing a network-based model of idealized cybernetic democracy, where tough issues are mediated in balanced and inclusive ways.

This vision is motivated by a sense of profound global transition and apparent urgency. This vision is "integral" in that is it based on what appears to be the best information and insight the human race has gathered, brought together across all sectors and disciplines and cultures and departments, into a comprehensive and interconnected "division of labor" outlining the essence of a collaborative project for human well being.

Governance, democracy, justice, wisdom and ethics -- are all defined in the context of "cybernetics" and a simple homeostatic model of balance in the context of the whole. It is a vision of a networked world, where recursive levels of interconnections between all activities help the human community find balance, wisdom and grace in all things.

All values, all laws, all "guard rails and guidelines" are defined by boundary values in dimensions.

In this design, everything in reality is balanced with respect to the whole, in the context of the whole, or One. The One is replicated at all levels of experience. Each level of Whole has its own native center-point of balance, and wholes are nested within wholes, and interconnected in every way -- always voluntarily, never by compulsion.

This recursive center-point is ORIGIN -- replicated everywhere at every level of scale, as the ideal guidance point and polestar -- for the individual, for the family, for the group or neighborhood or city or nation. Everything converges towards the universal center in waves of "homeostatic relaxation".

Primary elements
Oneness and the mystery
The Postulation of ORIGIN
Leibnitz - Characteristica Universalis
Linear optimization

Primary elements
Sketch | Back

This framework is intended to sketch out the primary dimensions and factors that could be brought together in service to human survival and well-being.

Let's make a list

  • In all things, centering with respect to the whole, in feedback connection to the whole
  • Ethics - ethics of whole systems in global/local balance, suggested guidance for individuals and governments
  • Spirituality
  • Interreligious collaboration and understanding
  • Homeostatic democracy and governance
  • Collaboration on primary issues, as per the United Nations objectives

A world interconnected under a banner of wholeness and oneness, emphasizing and supporting local independence, freedom and diversity, yet tuned and guided by a sense of individual personal and institutional responsibility for human welfare, individual and collective.

Support diversity and freedom while honoring common ground and mutual respect

This vision vitalizes individual human health, psychological and physiological

It addresses all major human needs, individual and collective -- food, shelter, water, sanitation -- a long list

We can't make a list of everything -- but we can define general principles for individula and collective governance that enable human beings to respond and act in ways that are held in a universal ethic of vital force, empowerment and grace

Thu, Apr 22, 2021

Oneness and the mystery
Sketch | Back

This project has emerged over the years alongside extensive work in interfaith and interspirituality. The primary theme there has been the search for common factors underlying the world's religions, and on the basis of which cooperation and a shared understanding might emerge or be strengthened.

The primary concept holding the interspirituality work together is the theme of "One", or "The One", "Oneness". Here is the context of ontology, we see "the one" as the essential wholeness of reality, which is parsed by human experience into every concept that informs civilization.

This theological/epistemological perspective is reviewed on here:

One project along this line is "Interspirit" -"

Tue, Jun 15, 2021

The Postulation of ORIGIN
Note | Back

We propose and postulate a single universal coordinate origin for indexing all global processes

We postulate and propose a common reference point in shared cybernetic space.

We propose a common zero

We propose a common coordinate/reference frame

A definition of universal global law based on homeostasis and common center

Thu, Apr 22, 2021

In mathematics, the origin of a Euclidean space is a special point, usually denoted by the letter O, used as a fixed point of reference for the geometry of the surrounding space.

In physical problems, the choice of origin is often arbitrary, meaning any choice of origin will ultimately give the same answer. This allows one to pick an origin point that makes the mathematics as simple as possible, often by taking advantage of some kind of geometric symmetry.

Cartesian coordinates

In a Cartesian coordinate system, the origin is the point where the axes of the system intersect.[1] The origin divides each of these axes into two halves, a positive and a negative semiaxis.[2] Points can then be located with reference to the origin by giving their numerical coordinates—that is, the positions of their projections along each axis, either in the positive or negative direction. The coordinates of the origin are always all zero, for example (0,0) in two dimensions and (0,0,0) in three.[1]

Cartesian coordinates In a Cartesian coordinate system, the origin is the point where the axes of the system intersect.[1] The origin divides each of these axes into two halves, a positive and a negative semiaxis.[2] Points can then be located with reference to the origin by giving their numerical coordinates—that is, the positions of their projections along each axis, either in the positive or negative direction. The coordinates of the origin are always all zero, for example (0,0) in two dimensions and (0,0,0) in three.[1]

Other coordinate systems In a polar coordinate system, the origin may also be called the pole. It does not itself have well-defined polar coordinates, because the polar coordinates of a point include the angle made by the positive x-axis and the ray from the origin to the point, and this ray is not well-defined for the origin itself.[3]

In Euclidean geometry, the origin may be chosen freely as any convenient point of reference.[4]

The origin of the complex plane can be referred as the point where real axis and imaginary axis intersect each other. In other words, it is the complex number zero.[5]

Note | Back

circular causality - feedback and control or self-control of a system through homeostasis

Wed, Apr 28, 2021

Cybernetics is a transdisciplinary approach for exploring regulatory and purposive systems—their structures, constraints, and possibilities. The core concept of the discipline is circular causality or feedback—that is, where the outcomes of actions are taken as inputs for further action. Cybernetics is concerned with such processes however they are embodied, including in environmental, technological, biological, cognitive, and social systems, and in the context of practical activities such as designing, learning, managing, and conversation.

Cybernetics has its origins in the intersection of the fields of control systems, electrical network theory, mechanical engineering, logic modeling, evolutionary biology, neuroscience, anthropology, and psychology in the 1940s, often attributed to the Macy Conferences. Since then, cybernetics has become even broader in scope to include work in domains such as design, family therapy, management and organisation, pedagogy, sociology, and the creative arts.

At the same time, questions arising from circular causality have been explored in relation to the philosophy of science, ethics, and constructivist approaches. Contemporary cybernetics thus varies widely in scope and focus, with cyberneticians variously adopting and combining technical, scientific, philosophical, creative, and critical approaches.


Subdivisions of the field

Cybernetics is sometimes used as a generic term, which serves as an umbrella for many systems-related scientific fields.

In art

Nicolas Schöffer's CYSP I (1956) was perhaps the first artwork to explicitly employ cybernetic principles (CYSP is an acronym that joins the first two letters of the words "CYbernetic" and "SPatiodynamic"). The prominent and influential Cybernetic Serendipity exhibition was held at the Institute of Contemporary Arts in 1968 curated by Jasia Reichardt, including Schöffer's CYSP I and Gordon Pask's Colloquy of Mobiles installation. Pask's reflections on Colloquy connected it to his earlier Musicolour installation and to what he termed "aesthetically potent environments", a concept that connected this artistic work to his concerns with teaching and learning.

The artist Roy Ascott elaborated an extensive theory of cybernetic art in "Behaviourist Art and the Cybernetic Vision" (Cybernetica, Journal of the International Association for Cybernetics (Namur), Volume IX, No.4, 1966; Volume X No.1, 1967) and in "The Cybernetic Stance: My Process and Purpose" (Leonardo Vol 1, No 2, 1968).

Art historian Edward A. Shanken has written about the history of art and cybernetics in essays including "Cybernetics and Art: Cultural Convergence in the 1960s" and From Cybernetics to Telematics: The Art, Pedagogy, and Theory of Roy Ascott (2003), which traces the trajectory of Ascott's work from cybernetic art to telematic art (art using computer networking as its medium, a precursor to

In architecture and design

Cybernetics was an influence on thinking in architecture and design in the decades after the Second World War. Ashby and Pask were drawn on by design theorists such as Horst Rittel, Christopher Alexander and Bruce Archer.Pask was a consultant to Nicholas Negroponte's Architecture Machine Group, forerunner of the MIT Media Lab, and collaborated with architect Cedric Price and theatre director Joan Littlewood on the influential Fun Palace project during the 1960s. Pask's 1950s Musicolour installation was the inspiration for John and Julia Frazer's work on Price's Generator project.

There has been a resurgence of interest in cybernetics and systems thinking amongst designers in recent decades, in relation to developments in technology and increasingly complex design challenges. Figures such as Klaus Krippendorff, Paul Pangaro and Ranulph Glanville have made significant contributions to both cybernetics and design research. The connections between the two fields have come to be understood less in terms of application and more as reflections of each other.

In biology

See also: autopoiesis, biocybernetics, heterostasis, homeostasis, medical cybernetics, systems biology, and practopoiesis

Cybernetics in biology is the study of cybernetic systems present in biological organisms, primarily focusing on how animals adapt to their environment, and how information in the form of genes is passed from generation to generation. There is also a secondary focus on combining artificial systems with biological systems. A notable application to the biology world would be that, in 1955, the physicist George Gamow published a prescient article in Scientific American called "Information transfer in the living cell", and cybernetics gave biologists Jacques Monod and François Jacob a language for formulating their early theory of gene regulatory networks in the 1960s.

In computer science

Computer science directly applies the concepts of cybernetics to the control of devices and the analysis of information - examples being cellular automatons and decision support systems.

In engineering

An artificial heart, a product of biomedical engineering. See also: adaptive system, engineering cybernetics, systems engineering, and control system Cybernetics in engineering is used to analyze cascading failures and system accidents, in which the small errors and imperfections in a system can generate disastrous outcomes.

In Earth system science

Geocybernetics aims to study and control the complex co-evolution of ecosphere and anthroposphere, for example, for dealing with planetary problems such as anthropogenic global warming.[50] Geocybernetics applies a dynamical systems perspective to Earth system analysis. It provides a theoretical framework for studying the implications of following different sustainability paradigms on co-evolutionary trajectories of the planetary socio-ecological system to reveal attractors in this system, their stability, resilience and reachability. Concepts such as tipping points in the climate system, planetary boundaries, the safe operating space for humanity and proposals for manipulating Earth system dynamics on a global scale such as geoengineering have been framed in the language of geocybernetic Earth system analysis.

In law

See also: regulation and metagovernment

As a form of regulation, cybernetics has been always close to law, specially in regulation and legal sciences.

In management

Main article: Management cybernetics

Management as a field of study covers the task of managing a multitude of systems (often business systems), which presents a wide natural overlap with many of the classical concepts of cybernetics.

In mathematics

See also: control theory, dynamical system, and systems theory Mathematical cybernetics focuses on the factors of information, interaction of parts in systems, and the structure of systems.

In psychology

See also: systems psychology, agent-based model, perceptual control theory, behavioral cybernetics, and psychovector analysis

In science, the human mind and individuals are often observed as autonomous and interconnected systems, allowing the cybernetic approach to be leveraged in those fields of study as well.

In sociology

See also: sociocybernetics and social systems

By examining group behavior through the lens of cybernetics, sociologists can seek the reasons for such spontaneous events as smart mobs and riots, as well as how communities develop rules such as etiquette by consensus without formal discussion.[citation needed] Affect Control Theory explains role behavior, emotions, and labeling theory in terms of homeostatic maintenance of sentiments associated with cultural categories.

The most comprehensive attempt ever made in the social sciences to increase cybernetics in a generalized theory of society was made by Talcott Parsons. In this way, cybernetics establishes the basic hierarchy in Parsons' AGIL paradigm, which is the ordering system-dimension of his action theory. These and other cybernetic models in sociology are reviewed in a book edited by McClelland and Fararo.


Note | Back

Organic balance in all things -- in humanity, in civilization, in the biosphere, in all things

governance - personal self-regulation - centering

Wed, Apr 28, 2021

In biology, homeostasis is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance, being kept within certain pre-set limits (homeostatic range). Other variables include the pH of extracellular fluid, the concentrations of sodium, potassium and calcium ions, as well as that of the blood sugar level, and these need to be regulated despite changes in the environment, diet, or level of activity. Each of these variables is controlled by one or more regulators or homeostatic mechanisms, which together maintain life.

Homeostasis is brought about by a natural resistance to change when already in the optimal conditions,[2] and equilibrium is maintained by many regulatory mechanisms. All homeostatic control mechanisms have at least three interdependent components for the variable being regulated: a receptor, a control centre, and an effector. The receptor is the sensing component that monitors and responds to changes in the environment, either external or internal. Receptors include thermoreceptors, and mechanoreceptors. Control centres include the respiratory centre, and the renin–angiotensin system. An effector is the target acted on, to bring about the change back to the normal state. At the cellular level, receptors include nuclear receptors that bring about changes in gene expression through up-regulation or down-regulation, and act in negative feedback mechanisms. An example of this is in the control of bile acids in the liver.

Some centers, such as the renin–angiotensin system, control more than one variable. When the receptor senses a stimulus, it reacts by sending action potentials to a control center. The control center sets the maintenance range—the acceptable upper and lower limits—for the particular variable, such as temperature. The control center responds to the signal by determining an appropriate response and sending signals to an effector, which can be one or more muscles, an organ, or a gland. When the signal is received and acted on, negative feedback is provided to the receptor that stops the need for further signaling.

The cannabinoid receptor type 1 (CB1), located at the presynaptic neuron, is a receptor that can stop stressful neurotransmitter release to the postsynaptic neuron; it is activated by endocannabinoids (ECs) such as anandamide (N-arachidonoylethanolamide; AEA) and 2-arachidonoylglycerol (2-AG) via a retrograde signaling process in which these compounds are synthesized by and released from postsynaptic neurons, and travel back to the presynaptic terminal to bind to the CB1 receptor for modulation of neurotransmitter release to obtain homeostasis.

The polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) are synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs) mediate significant effects in the fine-tune adjustment of body homeostasis.


In the Gaia hypothesis, James Lovelock stated that the entire mass of living matter on Earth (or any planet with life) functions as a vast homeostatic superorganism that actively modifies its planetary environment to produce the environmental conditions necessary for its own survival. In this view, the entire planet maintains several homeostasis (the primary one being temperature homeostasis). Whether this sort of system is present on Earth is open to debate. However, some relatively simple homeostatic mechanisms are generally accepted. For example, it is sometimes claimed that when atmospheric carbon dioxide levels rise, certain plants may be able to grow better and thus act to remove more carbon dioxide from the atmosphere. However, warming has exacerbated droughts, making water the actual limiting factor on land. When sunlight is plentiful and the atmospheric temperature climbs, it has been claimed that the phytoplankton of the ocean surface waters, acting as global sunshine, and therefore heat sensors, may thrive and produce more dimethyl sulfide (DMS). The DMS molecules act as cloud condensation nuclei, which produce more clouds, and thus increase the atmospheric albedo, and this feeds back to lower the temperature of the atmosphere. However, rising sea temperature has stratified the oceans, separating warm, sunlit waters from cool, nutrient-rich waters. Thus, nutrients have become the limiting factor, and plankton levels have actually fallen over the past 50 years, not risen. As scientists discover more about Earth, vast numbers of positive and negative feedback loops are being discovered, that, together, maintain a metastable condition, sometimes within a very broad range of environmental conditions.


Leibnitz - Characteristica Universalis
Note | Back

We are exploring a primary ontology for all conceptualization and ideas. The "Characteristica Universalis" from Leibniz is a similar or related idea, if not identical.

Tue, Apr 27, 2021

Characteristica universalis From Wikipedia, the free encyclopedia Jump to navigationJump to search "Universal characteristic" redirects here. For the concept of the "three universal characteristics" in Buddhism, see Three marks of existence. The Latin term characteristica universalis, commonly interpreted as universal characteristic, or universal character in English, is a universal and formal language imagined by Gottfried Leibniz able to express mathematical, scientific, and metaphysical concepts. Leibniz thus hoped to create a language usable within the framework of a universal logical calculation or calculus ratiocinator.

The characteristica universalis is a recurring concept in the writings of Leibniz. When writing in French, he sometimes employed the phrase spécieuse générale to the same effect. The concept is sometimes paired with his notion of a calculus ratiocinator and with his plans for an encyclopaedia as a compendium of all human knowledge.

A universal pictographic language: the key to all the sciences

International communication Many Leibniz scholars writing in English seem to agree that he intended his characteristica universalis or "universal character" to be a form of pasigraphy, or ideographic language. This was to be based on a rationalised version of the 'principles' of Chinese characters, as Europeans understood these characters in the seventeenth century. From this perspective it is common to find the characteristica universalis associated with contemporary universal language projects like Esperanto, auxiliary languages like Interlingua, and formal logic projects like Frege's Begriffsschrift. The global expansion of European commerce in Leibniz's time provided mercantilist motivations for a universal language of trade so that traders could communicate with any natural language.

Others, such as Jaenecke, for example, have observed that Leibniz also had other intentions for the characteristica universalis, and these aspects appear to be a source of the aforementioned vagueness and inconsistency in modern interpretations. According to Jaenecke,

the Leibniz project is not a matter of logic but rather one of knowledge representation, a field largely unexploited in today's logic-oriented epistemology and philosophy of science. It is precisely this one-sided orientation of these disciplines, which is responsible for the distorted picture of Leibniz's work found in the literature.

—?Jaenecke 1996 As Couturat wrote, Leibniz criticized the linguistic systems of George Dalgarno and John Wilkins for this reason since they focused on

...practical uses rather than scientific utility, that is, for being chiefly artificial languages intended for international communication and not philosophical languages that would express the logical relations of concepts. He favors, and opposes to them, the true "real characteristic," which would express the composition of concepts by the combination of signs representing their simple elements, such that the correspondence between composite ideas and their symbols would be natural and no longer conventional.

—?Couturat, 1901, chpt. 3 A universal language of science Leibniz said that his goal was an alphabet of human thought, a universal symbolic language (characteristic) for science, mathematics and metaphysics. According to Couturat, "In May 1676, he once again identified the universal language with the characteristic and dreamed of a language that would also be a calculus—a sort of algebra of thought" (1901, chp 3.). This characteristic was a universalisation of the various "real characteristics". Couturat wrote that Leibniz gave Egyptian and Chinese hieroglyphics and chemical signs as examples of real characteristics writing:

This shows that the real characteristic was for him an ideography, that is, a system of signs that directly represent things (or, rather, ideas) and not words, in such a way that each nation could read them and translate them into its own language.

—?Couturat, 1901, chpt. 3 In a footnote Couturat added:

Elsewhere Leibniz even includes among the types of signs musical notes and astronomical signs (the signs of the zodiac and those of the planets, including the sun and the moon). It should be noted that Leibniz sometimes employs planetary signs in place of letters in his algebraic calculations

—?Couturat, 1901, chpt. 3 Metaphysics Hartley Rogers emphasised the metaphysical aspect of the characteristica universalis by relating it to the "elementary theory of the ordering of the reals," defining it as "a precisely definable system for making statements of science" (Rogers 1963: 934). Universal language projects like Esperanto, and formal logic projects like Frege's Begriffsschrift are not commonly concerned with the epistemic synthesis of empirical science, mathematics, pictographs and metaphysics in the way Leibniz described. Hence scholars have had difficulty in showing how projects such as the Begriffsschrift and Esperanto embody the full vision Leibniz had for his characteristica.

The writings of Alexander Gode suggested that Leibniz' characteristica had a metaphysical bias which prevented it from reflecting reality faithfully. Gode emphasized that Leibniz established certain goals or functions first, and then developed the characteristica to fulfill those functions.

Science In the domain of science, Leibniz aimed for his characteristica to form diagrams or pictures, depicting any system at any scale, and understood by all regardless of native language. Leibniz wrote:

And although learned men have long since thought of some kind of language or universal characteristic by which all concepts and things can be put into beautiful order, and with whose help different nations might communicate their thoughts and each read in his own language what another has written in his, yet no one has attempted a language or characteristic which includes at once both the arts of discovery and judgement, that is, one whose signs and characters serve the same purpose that arithmetical signs serve for numbers, and algebraic signs for quantities taken abstractly. Yet it does seem that since God has bestowed these two sciences on mankind, he has sought to notify us that a far greater secret lies hidden in our understanding, of which these are but the shadows.

—?Leibniz, Zur allgemeinen Charakteristik. Hauptschriften zur Grundlegung der Philosophie. Philosophische Werke Band 1. page 30-31. Translated by Artur Buchenau. Reviewed and with introduction and notes published by Ernst Cassirer. Hamburg: Felix Meiner. 1966. (Unless stated otherwise, all Leibniz quotations are from his On the General Characteristic as translated in Loemker 1969: 221–25. This passage is from p. 222.) P. P. Weiner raised an example of a large scale application of Leibniz's characteristica to climatic science. A weather-forecaster invented by Athanasius Kircher "interested Leibniz in connection with his own attempts to invent a universal language" (1940).

Leibniz talked about his dream of a universal scientific language at the very dawn of his career, as follows:

We have spoken of the art of complication of the sciences, i.e., of inventive logic... But when the tables of categories of our art of complication have been formed, something greater will emerge. For let the first terms, of the combination of which all others consist, be designated by signs; these signs will be a kind of alphabet. It will be convenient for the signs to be as natural as possible—e.g., for one, a point; for numbers, points; for the relations of one entity with another, lines; for the variation of angles and of extremities in lines, kinds of relations. If these are correctly and ingeniously established, this universal writing will be as easy as it is common,and will be capable of being read without any dictionary; at the same time, a fundamental knowledge of all things will be obtained. The whole of such a writing will be made of geometrical figures, as it were, and of a kind of pictures — just as the ancient Egyptians did, and the Chinese do today. Their pictures, however, are not reduced to a fixed alphabet... with the result that a tremendous strain on the memory is necessary, which is the contrary of what we propose.

—?On The Art of Combination, 1666, translated in Parkinson 1966: 10–11 Nicholas Rescher, reviewing Cohen's 1954 article, wrote that:

Leibniz's program of a universal science (scientia universalis) for coordinating all human knowledge into a systematic whole comprises two parts: (1) a universal notation (characteristica universalis) by use of which any item of information whatever can be recorded in a natural and systematic way, and (2) a means of manipulating the knowledge thus recorded in a computational fashion, so as to reveal its logical interrelations and consequences (the calculus ratiocinator).

—?Rescher 1954 Near the end of his life, Leibniz wrote that combining metaphysics with mathematics and science through a universal character would require creating what he called:

... a kind of general algebra in which all truths of reason would be reduced to a kind of calculus. At the same time, this would be a kind of universal language or writing, though infinitely different from all such languages which have thus far been proposed; for the characters and the words themselves would direct the mind, and the errors — excepting those of fact — would only be calculation mistakes. It would be very difficult to form or invent this language or characteristic, but very easy to learn it without any dictionaries.

—?Leibniz, letter to Nicolas Remond, 10 January 1714, in Loemker 1969: 654. Translation revised. The universal "representation" of knowledge would therefore combine lines and points with "a kind of pictures" (pictographs or logograms) to be manipulated by means of his calculus ratiocinator. He hoped his pictorial algebra would advance the scientific treatment of qualitative phenomena, thereby constituting "that science in which are treated the forms or formulas of things in general, that is, quality in general" (On Universal Synthesis and Analysis, 1679, in Loemker 1969: 233).

His diagrammatic reasoning

Basic elements of Leibniz's pictograms. Since the characteristica universalis is diagrammatic and employs pictograms (see picture), the diagrams in Leibniz's work warrant close study. On at least two occasions, Leibniz illustrated his philosophical reasoning with diagrams. One diagram, the frontispiece to his 1666 De Arte Combinatoria (On the Art of Combinations), represents the Aristotelian theory of how all material things are formed from combinations of the elements earth, water, air, and fire.

Leibniz's diagrammatic reasoning. These four elements make up the four corners of a diamond (see picture). Opposing pairs of these are joined by a bar labeled "contraries" (earth-air, fire-water). At the four corners of the superimposed square are the four qualities defining the elements. Each adjacent pair of these is joined by a bar labeled "possible combination"; the diagonals joining them are labeled "impossible combination". Starting from the top, fire is formed from the combination of dryness and heat; air from wetness and heat; water from coldness and wetness; earth from coldness and dryness. This diagram is reproduced in several texts including Saemtliche Schriften und Briefe (Saemtliche Schriften und Briefe, Reihe VI, Band 1: 166, Loemker 1969: 83, 366, Karl Popp and Erwin Stein 2000: 33).

Leibniz retraces his steps and makes a discovery Leibniz rightly saw that creating the characteristica would be difficult, fixing the time required for devising it as follows: "I think that some selected men could finish the matter in five years" (Loemker 1969: 224), later remarking: "And so I repeat, what I have often said, that a man who is neither a prophet nor a prince can ever undertake any thing of greater good to mankind of more fitting for divine glory" (Loemker 1969: 225). But later in life, a more sober note emerged. In a March 1706 letter to the Electress Sophia of Hanover, the spouse of his patron, he wrote:

It is true that in the past I planned a new way of calculating suitable for matters which have nothing in common with mathematics, and if this kind of logic were put into practice, every reasoning, even probabilistic ones, would be like that of the mathematician: if need be, the lesser minds which had application and good will could, if not accompany the greatest minds, then at least follow them. For one could always say: let us calculate, and judge correctly through this, as much as the data and reason can provide us with the means for it. But I do not know if I will ever be in a position to carry out such a project, which requires more than one hand; and it even seems that mankind is still not mature enough to lay claim to the advantages which this method could provide.

—?Strickland 2011: 355 In another 1714 letter to Nicholas Remond, he wrote:

I have spoken to the Marquis de l'Hôpital and others about my general algebra, but they have paid no more attention to it than if I had told them about a dream of mine. I should have to support it too by some obvious application, but to achieve this it would be necessary to work out at least a part of my characteristic, a task which is not easy, especially in my present condition and without the advantage of discussions with men who could stimulate and help me in work of this nature.

—?Loemker 1969: 656 Eventually, by discovering binary digits again from Chinese works, which was now from the I Ching, Leibniz arrived at what he felt was a discovery of a link that would thereby create his characteristica universalis. It eventually created the foundations of symbolic logic and modern philosophy, specifically the predicate-based Analytic Philosophy and Boolean Logic.

Three criteria C. J. Cohen (1954) set out three criteria which any project for a philosophical language would need to meet before it could be considered a version of the characteristica universalis. In setting out these criteria, Cohen made reference to the concept of "logistic". This concept is not the same as that used in statistical analysis. In 1918, Clarence Irving Lewis, the first English-speaking logician to translate and discuss some of Leibniz's logical writings, elaborated on "logistic" as follows:

Logistic may be defined as the science which deals with types of order as such. It is not so much a subject as a method. Although most logistic is either founded upon or makes large use of the principles of symbolic logic, still a science of order in general does not necessarily presuppose or begin with symbolic logic.

—?Lewis 1960: 3, 7–9 (Lewis here echoed the thinking of his teacher Josiah Royce; see "Order" in the 1951 Collected Logical Writings of Royce.) Following from this Cohen stipulated that the universal character would have to serve as:

An "international auxiliary language" enabling persons speaking different languages to communicate with one another; Symbolism for the exact and systematic expression of all present knowledge, making possible a "logistic" treatment of science in general. This symbolism could also be expanded to accommodate future knowledge; An instrument of discovery and demonstration. These criteria together with the notion of logistic reveal that Cohen and Lewis both associated the characteristica with the methods and objectives of general systems theory.

A common scientific language

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2011) (Learn how and when to remove this template message) Inconsistency, vagueness, and a lack of specifics in both English language translations and modern English language interpretations of Leibniz's writings render a clear exposition difficult. As with Leibniz's calculus ratiocinator two different schools of philosophical thought have come to emphasise two different aspects that can be found in Leibniz's writing. The first point of view emphasizes logic and language, and is associated with analytic philosophy and rationalism. The second point of view is more in tune with Couturat's views as expressed above, which emphasize science and engineering. This point of view is associated with synthetic philosophy and empiricism. Either or both of these aspects Leibniz hoped would guide human reasoning like Ariadne's thread and thereby suggest solutions to many of humanity's urgent problems.

Gödel alleges conspiracy Because Leibniz never described the characteristica universalis in operational detail, many philosophers have deemed it an absurd fantasy. In this vein, Parkinson wrote:

Leibniz's views about the systematic character of all knowledge are linked with his plans for a universal symbolism, a Characteristica Universalis. This was to be a calculus which would cover all thought, and replace controversy by calculation. The ideal now seems absurdly optimistic..."

—?Parkinson 1973: ix The logician Kurt Gödel, on the other hand, believed that the characteristica universalis was feasible, and that its development would revolutionize mathematical practice (Dawson 1997). He noticed, however, that a detailed treatment of the characteristica was conspicuously absent from Leibniz's publications. It appears that Gödel assembled all of Leibniz's texts mentioning the characteristica, and convinced himself that some sort of systematic and conspiratorial censoring had taken place, a belief that became obsessional. Gödel may have failed to appreciate the magnitude of the task facing the editors of Leibniz's manuscripts, given that Leibniz left about 15,000 letters and 40,000 pages of other manuscripts. Even now, most of this huge Nachlass remains unpublished.

Related 17th century projects Others in the 17th century, such as George Dalgarno, attempted similar philosophical and linguistic projects, some under the heading of mathesis universalis. A notable example was John Wilkins, the author of An Essay towards a Real Character and a Philosophical Language, who wrote a thesaurus as a first step towards a universal language. He intended to add to his thesaurus an alphabet of human thought (an organisational scheme, similar to a thesaurus or the Dewey decimal system), and an "algebra of thought," allowing rule-based manipulation. The philosophers and linguists who undertook such projects often belonged to pansophical (universal knowledge) and scientific knowledge groups in London and Oxford, collectively known as the "Invisible College" and now seen as forerunners of the Royal Society.

More recent projects A wide variety of constructed languages have emerged over the past 150 years which appear to support many of Leibniz's intuitions. If indeed they do support Leibniz's vision of unified science, then the remaining question is whether Ariadne's unifying thread can be discerned among these various projects, leading to their integration.

Raymond F. Piper (1957; 432–433) claimed that O.L. Reiser's Unified Symbolism for World Understanding in Science (1955), an expansion of his A Philosophy for World Unification (1946), was inspired by Leibniz's characteristica universalis, and believed necessary for world understanding and unbiased communications so that "war may eventually be eliminated and that a worldwide organism of peaceful human beings may gradually be established" (Piper Ibid.). The study of Boolean algebras and group theory in the 19th century proved correct Leibniz's intuition that algebraic methods could be used to reason about qualitative and non-numerical phenomena. Specifically, the members of the universal set of a Boolean algebra or group need not be numbers. Moreover, a fair bit of philosophy and theoretical science can be formalized as axiomatic theories embodying first-order logic and set theory. Note also how model theory has been employed to formalize and reason about such emphatically nonnumerical subjects as semantics and pragmatics of natural languages. But these approaches have yet to result in any pictographic notations. Fearnley-Sander (1986) went one step further, defining Leibniz's characteristica as a combination of the algebra of logic (which Fearnley-Sander defined as the calculus ratiocinator) and the algebra of geometry (defined as the characteristica geometrica). Fearnley-Sander suggested that this combination had "come to pass" with the rise of universal algebra. Some people other than Fearnley-Sander working in the area of "universal algebra," the study of the mathematical and logical properties of algebraic structures generally, do not believe that universal algebra has anything to do with the characteristica. Palko, Gy Bulcsu (1986) considered structured analysis for analyzing and designing hierarchic systems by using an iconic language, and suggested that such was an application of the universal characteristics Leibniz's project to the language of structured analysis and the formalization of an iconic control system. Kluge (1980) argued that Frege's landmark Begriffsschrift was consciously inspired by the characteristica universalis. Even though Charles Sanders Peirce, a founder of semiotics, believed that all reasoning was diagrammatic, the relation, if any, of the characteristica to his existential graphs and to semiotics has yet to be explored in the English literature. Several aspects of logical positivism, specifically: The first-order theories of Rudolf Carnap's Aufbau (1928, English translation 1967) and of its successor, Goodman (1977), are Leibnizian in their sweep and ambition, although Leibniz would have taken strenuous exception to Carnap's resolute hostility to all metaphysics. The unification of science movement of the 1930s, led by Otto Neurath, Rudolf Carnap, and Charles W. Morris, and later by Edward Haskell et al., bears comparison with the characteristica. Otto Neurath's isotype pictogram system, and "international picture language."[1] The following attempts to recast parts of theoretical science as axiomatic first-order theories can be viewed as attempts to develop parts of the characteristica: Special relativity, by Hans Reichenbach, Rudolf Carnap, and others during the 1920s (Carnap 1958: 197–212); Biology, by Joseph Woodger (1937), also during the 1930s (Carnap 1958: 213–20): Mechanics, by Suppes (1957: 291–305) and others during the 1950s. The objectives of the 'Symbolator' or 'idea-computer' (Goppold 1994) resemble in some respects a less ambitious version of the characteristica universalis. Connections with the Jewish Cabbala, and the International auxiliary language policy of the Bahá?í Faith have also been made. The characteristic has also been claimed as an ancestor of the pictographic Energy Systems Language and associated Emergy Synthesis of Odum's Systems Ecology (Cevolatti and Maud, 2004). The Energy Systems Language combines lines and points with "a kind of pictures" manipulated by means of digital computers and software packages like EXTEND (Odum, Odum, and Peterson 1995), and Valyi's Emergy Simulator.[2] It was designed to provide a general systems language affording quantitative accounting and mathematical simulation of qualitative energy relationships between ecological entities: "that science in which are treated the forms or formulas of things in general, that is, quality in general". A general algebra known as the emergy algebra emerged from the repeated use of this language in modelling and simulating the energetic principles of ecological relations. In particular it afforded the discovery and demonstration of the maximum power principle, suggested as the fourth law of thermodynamics. If this ancestral claim is granted, then simulation software like EXTEND and Valyi's Emergy Simulator can be seen as combining the characteristica and the calculus ratiocinator, if and only if the digital computer is interpreted as a physical embodiment of the calculus ratiocinator. The work of Mario Bunge on the border of physics and metaphysics seems grounded in metaphysical presuppositions similar to those of Leibniz's characteristica (Radnitzky 1981: 246). Jacob Linzbach's Transcendent Algebra, a pasigraphy designed to allow the "calculation of truth" through manipulation of given facts following basic principles much like those used in mathematics, was inspired by Leibniz's characteristica. Lojban (and its older version Loglan) are both artificial languages derived from predicate logic, and intended for use in human communication. Charles K. Bliss's Blissymbols or Blissymbolics, presently used as an 'alternative and augmentative language' for disabled people but originally intended as an International 'Auxlang', is said to be in the mold of the characteristica (Bliss 1978). Emoji, while still in their relative infancy, could be considered to be an early stage in the organic development of a universal logographic language. Ithkuil is a constructed language created by John Quijada, designed to express deeper levels of human cognition briefly yet overtly and clearly, particularly with regard to human categorization. The International Organization for Standardization (ISO), with a history going back to the 1920s, was founded under its current name in 1947 as a non-governmental organization with general consultative status with the United Nations Economic and Social Council. Its membership consists of the national standards bodies of 164 of the UN Member States. Based on the work of its over 250 technical committees, the ISO has issued over 20,000 standards for scientific terminology, names and abbreviations, weights and measures, and safety-related and other pictographs. The Unified Modeling Language (UML) is a general-purpose, developmental modeling language in the field of software engineering that is intended to provide a standard way to visualize the design of a system. Bennett, John G.; Bortoft, Henri; and Pledge, Kenneth: "Towards an Objectively Complete Language: An Essay in Objective Description as Applied to Scientific Procedure," Systematics: The Journal of the Institute for the Comparative Study of History, Philosophy and the Sciences, Vol. 3, No. 3, (December 1965), pp. 185-229. The International Phonetic Alphabet (IPA) is an alphabetic system of phonetic notation based primarily on the Latin script. It was devised by the International Phonetic Association in the late 19th century as a standardized representation of the sounds of spoken language. Notes


Linear optimization
Draft | Back

This message was sent to ontolog, June 15, 2021


Working on this very simple threaded forum design and thinking about how this relates to ontology and network science in general, just a small thought that feels exciting and potent.

You want to put something on the web, you write that something in the HTML programming language – ‘Hyper Text Markup Language”

HTML is about “containers” – start and stop points in linear sequences – “bounded intervals” so to speak – and it is 100% hierarchical and in that sense, linear – first to last, top to bottom – in a straight line.

As I am working on this forum design, I am also very aware that HTML execution by the server is also sequential. Linearly ordered, one thing at a time in absolute order.

Starting at the top of the page, get the first object, get the second object, get the third object


Now the thought, still cooking in the back of my brain – is that this looks like a potent criteria for optimization – maybe, to honor Alex’s question about globalization (humanity rather than nation), even “global optimization”

To optimize something – what you need is a linear variable – some variable in commanding control of all the variables nested underneath it.

A strong case can be made the “the problem with money” is that is it is a simple one-dimensional linear variable – very easy to understand – “more money=good, less money=bad”)

Jeff Bezos is very good at linear optimization – but it’s very localized – to him.

We need “poly-centric optimization”

I want to meditate on this a bit more – but for way-back – I am reminded of Richard Bellman’s “Dynamic Programming” from many years ago.

I think we need something like a monster compression algorithm based on well-defined optimization criteria.

Everything on the planet fans in to one integral optimization. “Give me your poor huddled masses yearning to breathe free…..”


PS, this threaded forum architecture takes this same linearly-cascaded shape:

1) What group are you in

2) What is the first topic for that group

3) What is the first comment on that topic

4) What is the first reply to that comment

Tue, Jun 15, 2021