CLOSED LOOP INTERVAL ONTOLOGY        The Digital Integration of Conceptual Form
 TzimTzum/Kaballah | Loop definition | Home | ORIGIN
or register

Email *

 Select display Show public menu Show all theme groups Show all themes Show all terms Order results by Alphabetical Most recently edited Progress level Placeholder Note Sketch Draft Polished

Searches selected display

Universal conceptual form

Aligning the vision

Evolving and coalescing

Why we do this

Ethics / governance / science

Homeostatic governance

Idealized democracy

Reconciliation and integration

Holistic view on alternatives

Definitions and alternatives

Compare alternatives

How do we know?

How meaning is created

Foundational recursive definition

Spectrum of levels

The closed loop ensemble contains
all primary definitions

Dimensions of set theory

What is a number?

Topology of sets

How are they constructed?

Primary terms

Closed Loop framework

Hierarchical models

Euclid in digital space

Foundational method

Compositional semantics

How it works

The integrated science of mind

What does it mean?

Core terms

Constructive elements
and building blocks

Preserving data under transformation

In the beginning

Domain and universal

A design proposal

Mapping the grid

From other sources

Foundational computation

Perfecting political balance

Simultaneity or sequence

Concrete symbolic representation

Science, philosophy and math
are defined in concepts

Emerging from a point

Theme
Disjoint sets
Sketch

Definition / description

Sets with no elements in common

 Hide Placeholder Note Sketch Draft Polished

Sun, May 30, 2021

 Reference In mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set.[1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of more than two sets is called disjoint if any two distinct sets of the collection are disjoint.